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MAXIMUM STABILITY FO~S FOR REINFORCED CYLINDRICAL SHELLS UNDER 

EXTERNAL PRESSURE 

V. M, Pavlov and L. I. Shkutin UDC 539.4.012.1 

The problem of determining the reinforcement structure that maximizes the stabil- 
ity of a cylindrical shell subjected to external pressure was formulated in [i], 
where a numerical solution was obtained for a particular class of structures on 
the basis of a formula for the stability limit of a hinged anisotropic circular 
cylindrical shell of medium length in the membrane state. In the present article 
the stability limit is determined more accurately, without any constraint on the 
length of the shell, and the optimization is carried out over a broader class of 
structures. 

w Let us consider a circular cylindrical shell of constant thickness H, mean radius R, 
and length L, made of fibrous composite material. It is assumed than the material has a regu- 
lar layered structure, so that it is possible to distinguish a typical layer whose thickness 
is small as compared with that of the shell; the typical layer has multidirectional reinforce- 
merit symmetrical with respect to an arbitrary axial section of the shell; the fibers in all 
directions are made of the same linear-elastic material; the matrix material is linear-elas- 
tic and isotropic. 

In order to describe the state of stress and strain of the typical layer, we will em- 
ploy the mechanical model proposed in [2]. Under the assumptions formulated above, this model 
substitutes for an element of the reinforced layer the statically equivalent element of an 
orthotropic-elastic homogeneous layer whose state of stress and strain is determined in the 
principal surface coordinate system by the symmetric plane tensors of the average stresses 
fij and strains (the subscripts i, j run through the values i, 2). The equations of [2] 
or the relationshxp between the components of these tensors, simplified in accordance with 

the starting assumptions, take the form 

011 = (oE(a11~11 + al~elo.), o~12 = o)Ea~3sl~, I ~ 2; ( 1 . 1 )  
K K 

a ~  = e + ~ Zi'k, a ~  ---- ev o + -5-  X,hX2k, I ~__ 2, 
h=l h=l 

K K 

a83 = e (1 - -  Vo) + 2 "--5- ZrkZ2h, ~Oh ~ O, O) = O) h < I,  
k = l  h=l 

s =  ( t  - - o ) ] E 0 / ( l - - v ~ ) E ~ o > O ,  0 ~ < % ~ < 1 / 2 ,  

where Eo and E are the moduli of elasticity of the matrix and the fibers, respectively; vo is 
the Poisson ratio of the matrix; ~k(k = l, 2 ..... K) is the volume fraction of fibers of 
direction k (K is the total number of directions); m is the volume fraction of reinforcement; 
Xik are the direction cosines of the k-th direction with respect to the i-th coordinate line. 

For shell strains satisfying the Kirchhoff kinematic hypotheses we can write 

ei i  ~" P i i  -+- ~qii, 

where Pij, qij are the symmetric tensors of the tangential and bending strains of the middle 
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surface; ~ is the coordinate normal to the middle surface. Let Nij be the symmetric tangen- 
tial force tensor and Mij the symmetric internal moment tensor of the shell. By means of the 
usual procedure of integration over the normal coordinate, from (I.i) we establish the follow- 
ing relations between the shell tensors: 

M n  = D(al lq l l  + a1~.q22), 3/112 = Da~3q12, ( 1 . 3 )  

P n  = B(bl~N11 @ bllN2~), Po-1 = Bba3Nm, I ~ -  2; 

bll = all~a, b2~ " = aoJa,  bl~ = - - a l J a  , bs8 = t / a ~ ,  

a = a ~ a ~ - - a ~ 2 ,  B =  I /HEr D = H a E r  (1.4) 

The equations obtained for the orthotropic-elastic layer are used to determine the sta- 
bility limit of a shell with hinged ends subjected to uniform lateral pressure. Assuming that ~t 
the shell is sufficiently thin, we neglect the effect of the precritical bending strain on 
the stability limit. In order to investigate the stability of the membrane state of the 
shell, we use the equations of nonshallow shells represented in mixed (staticogeometric) form 
[3] (the resolvent system of two equations is obtained for the orthotropic in the same way as 
for the isotropic shell). These equations give the following stability conditions for the 
membrane state (p is the lateral pressure intensity, m = l, 2, 3, ... is the number of half- 
waves along the generator, n = 2, 3, 4, ... is the number of waves along the circumference): 

q < q* = m i n  Q, (1.5) 
9/l,n 

Q = tn~Q1 @ r~m~n-~t"~/Q~, (i. 6) 

Q~ = a=~(t - n - " )  § 2[(1 - n-~)al~ -4- aaa ]r~n-~m ~ + al~ran-~m ~, 

Q~ = b=~(t - -  n -~) -+- 2 [ ( t  - -  n-=)b~: + baalr~n-=m ~- -+- b~ffan-~m ~, 

q - -  p/( 'Vt--2t%)E),  r = ~ R / L ,  t ~ = H / ' V ' - ~ R .  

The critical value q* of the load parameter q determines the stability limit of the shell 
under lateral pressure�9 Since, in accordance with (1.2), the elastic coefficients aij , aaa, 
bij , has entering into expression (1.5) depend on the structure of the composite and on the 
elastic properties of its individual components, there is a real possibility of controlling 
the stability limit of the shell. 

w We will formulate the following optimization problem [i]: For given elastic char- 
acteristics of the reinforcement and matrix materials and constant volume reinforcement frac- 
tion, determine the reinforcement structure corresponding to the maximum critical load. 

independent optimization parameters and investigate their regions First we isolate the 
of possible values. Let 

K K 
(~ ('Ok 2 2 

= *= (2.1) 
h=l h=i 

Th~n expressions (1.2) take the form 

a11=~+~--*, a22=I-~8--~--*, 

al~ = * -+" 'roe, aaa = 2 ,  + (1 - - V o ) e ,  ( 2 . 2 )  

which expresses the dependence of the elastic coefficients on the two parameters q~, ~ (the 
constants e and vo are given). The specific reinforcement structure corresponding to fixed 
values of the parameters ~ and ~ is determined from Eqs. (2.1)nonuniquely, generally speak- 
ing. Accordingly, the optimum value of these parameters may correspond to a whole series of 
optimum reinforcement structures. 

The region of variation of the parameters ~, ~ cannot be arbitrary since they are de- 
rived from the parameters mk, Xk, which are subject to the conditions 

/f 

i> 0, Z = i, 0 < < i, = i - 
h=l 

using which it is possible to show that all the values of ~ and r corresponding to some rein- 
forcement structure lie in the region 

In fact, the first constraint follows directly from (2.1), since the quantities X~ k (k=l, 2, 
�9 .., K) are independent. Then let J--< K be a number such that 
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2 9 9 O O 

Here t he  e q u a l  s i g n  i s  r e a c h e d  when Xij = X~ (k = 1, 2, . . . ,  K) ,  i . e ~ ,  when, in  a c c o r d a n c e  
2 w i t h  ( 2 . 1 ) ,  X : j  = T- Th i s  means t h a t  

o 2 
~[h~2h ~< ~ (t - -  ~). 

A p p l y i n g  t h i s  i n e q u a l i t y  to  e x p r e s s i o n  ( 2 . 1 )  f o r  ~,  we e s t a b l i s h  t he  s e c o a d  of  t he  c o n s t r a i n t s  
on ~. 

I n  the  c o o r d i n a t e  s y s t e m  ~, ~ the  r e g i o n  ~ i s  t he  segment  o f  t he  p a r a b o l a  ~ = c 9 ( 1 -  ~ ) ,  
c u t  o f f  by the  s t r a i g h t  l i n e  @ = 0. Each p o i n t  on t he  s t r a i g h t  boundary  o f  t he  r e g i o n  ~ de-  
f i n e s  two f a m i l i e s  o f  f i b e r s ,  one d i r e c t e d  a l o n g  t h e  c i r c u m f e r e n c e ,  t h e  o t h e r  a l o n g  t h e  g e n e r a -  
t o r ,  and each  p o i n t  on the  p a r a b o l i c  b o u n d a r y  d e f i n e s  two s y m m e t r i c  o b l i q u e  f a m i l i e s .  Excep-  
t i o n s  a r e  fo rmed by t h e  two c o r n e r  p o i n t s  ~ = 0, ~ = 0 and ~ = 1, ~ = 0. The f i r s t  c o r r e -  
sponds  to a c i r c u m f e r e n t i a l  f a m i l y  o n l y ,  t h e  s econd  to  an a x i a l  f a m i l y  o n l y .  

The o p t i m i z a t i o n  p r o b l e m  c o n s i s t s  i n  f i n d i n g  t h o s e  v a l u e s  o f  t h e  o r t h o t r o p y  p a r a m e t e r s  
T, ~ which  g i v e  t h e  g r e a t e s t  v a l u e  o f  t h e  c r i t i c a l  l o a d  p a r a m e t e r  

q+ ~- max q* ---- max min Q. (2 .1 )  
cO,~ q~,'~ m,n 

I f  t he  v a l u e s  o f  ~,  ~ f rom ~ a r e  such  t h a t  the  i n e q u a l i t y  

bn + b33 ~ 0 ( 2 . 4 )  

is satisfied, then the value of the parameter m realizing min Q is equal to unity for any 
n >- 2, since both terms in expression (1.6) are functions increasing with respect to m. In 
fact, from (2.2) and (1.4) there follow the estimates, valid in the region ~, 

a,~ >~ 8 q- cp 2 :> O, a ~  > ~ + (t - -  q~)~ > O, 0 <:  a ~  <~ Vo~ + q)(t - -  q)), 

a>~(l--w0 ~)~z+[(t-2~) ~+2~(t-~)(t-v0) It>0, b n > 0 ,  b~>0, 
which ,  t o g e t h e r  w i t h  c o n d i t i o n  ( 2 . 4 ) ,  e n s u r e  ( a t  n >-2)  t h e  p o s i t i v e n e s s  o f  a l l  t he  c o e f f i -  
c i e n t s  o f  the  e x p r e s s i o n s  f o r  Qx and Qa c o n s i d e r e d  as p o l y n o m i a l s  i n  m. A c c o r d i n g l y ,  as  m 
i n c r e a s e s ,  the  f u n c t i o n  Q, i n c r e a s e s ,  t h e  f u n c t i o n  Qx/m ~ d e c r e a s e s ,  and the  r e c i p r o c a l  f u n c -  
t i o n  m~/Q~ increases. 

We note that condition (2.4) may be violated on the parabolic boundary of the region ~, 
where, in fact, the parameters a.., a~ take values comparable with unity, whereas the param- m3 
eter a is of the order of ~, a small quantity by virtue of the definition of a composite ma- 
terial. According to (1.4), the parameter bzu may here take large negative values at posi- 
tive values of b~ comparable with unity. This analysis makes it possible to establish the 
mechanical significance of condition (2.4): It excludes shells reinforced with two oblique 
families of fibers and possessing (together with low matrix stiffness) higher compliance in 
tension and compression than in shear. 

Obviously, 

q*(rp, , )  = min 0 ~ min 0 ~ q,(% ~), 
WI,?Z W~I,?I 

where for values of the parameters ~, ~ satisfying inequality (2.4) we get the equal sign. 
Hence it follows that if the values >-= ~+, ~ = ~+ realizing the maximum 

q+ = max q, = max rain Q (2 .5 )  
r#,~ ~,'~ m = l , n  

s a t i s f y  c o n d i t i o n  ( 2 . 4 ) ,  t h e n  t h e s e  v a l u e s  r e a l i z e  t h e  maximum ( 2 . 3 ) ,  s i n c e  

i.e., 

q*(~+, ~+) = q. (~+, ~+) ~ q.(tp, ~) >~ q*(% ~), 

q*(~+, ,+) >~ q*(% ~) 

(for any ~, ~ from ~). 

Below we consider the auxiliary problem of calculating the extremum (2.5) and the values 
= <p+, ~ = ~+, n = no r that realize it. This problem is solved in two successive stages. 

in the first stage we distinguish a subregion of the region ~ for points in which the order 
of the quantity q, is greatest and estimate the order of the minimizing values of n corre- 
sponding to these points. This enables us to replace the exact problem (2.5) by a certain 
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simplified problem. In the second stage we find explicit solutions of the simplified problem 
in certain regions of variation of the geometric parameters t, r. For these solutions condi- 
tion (2.4) proves to be satisfied, so that they are asymptotically exact solutions of the 
optimization problem posed. 

We temporarily �9 on the region of variation of the parameters ~, ~ the requirement 

a2~ = 0(1), ( 2 . 6 )  

which excludes from the region ~ the neighborhood of the point ~ = i, ~ = 0. We relate the 
order of the quantities r, n, Q (at m = i) to the small parameter t : 

r = O(ta), 5 > O, n ~ = O(t -~ ,  ~ >i O, Olm=~ = O(tv) 

(~, 8, and y are the order exponents). The first of these equations represents a comparative 
estimate of two independent geometric parameters r and t, whose values are known by condition. 
Accordingly the value of the exponent u (the condition ~ ~ 0 excludes very short shells) is 
also known. The other exponents, however, are not known and are determined as a result of 
an asymptotic analysis of the solution of the optimization problem formulated. 

We denote the exponent of the order of the first term in expression (1.6) (at m = i) by 
y, and that of the second by Y2. The exponent y is expressed in terms of YI and Y2 as fol- 
lows: 

y ~ rain (?1, ?~). 

This exponent is treated as a function of the parameters 8, ~, and ~ (the value of the param- 
eter ~ is assumed to be fixed). Let 

q, = 0 (t~-), q+ = 0 (t~'+); 

then in accordance with (2.5), 

y+ ---- rain ? , ,  7 .  = max ? = max [mill (Y1, Y~)], ( 2 . 7 )  

by using relations (2.6), (1.4), and (2.2) it can be shown that 

Ql[m=l : 0(1), Q2 : o(t-~), "~ f> o (Q2 > l / ( i  -Jr- e)) 

and, hence, 

71 = 1 - -  ~;,72 = 45 + 3 1 3 - - 3  + ~ ( 1 3 , % , ) .  ( 2 . 8 )  

Since y= is an increasing and y, a decreasing quantity with respect to 8, we obtain [8* is 
the value of the parameter B realizing the maximum (2.7)] 

[1, if Yi (0) ~ ?.2 (0), {0 6 , if ?i (0) ~?~ (0), 
? * =  1 - - ~ o ,  if ?~(O)>y.~(O) ,  6 . - -  ( 2 . 9 )  o, ~f "h (o) > ~ (o), 

where 8o is the solution of the equation 

~(~) = ~d~) 

The condition y1(O) > y2(O), which in expanded form may he written 

5 + ~(0, % , ) ! 4  < 1, 

ensures the existence of a solution of Eq. (2.10). 
resentation 

1, if 

7 , ( ~ , * )  = 5 + ~ ( 8 0 ,  ~,*) ,  if 

~*(~'  * ) =  { ~ ' - - 5 -  ~(~o, % , ) f4 ,  

f r o m  w h i c h  we o b t a i n  ( s i n c e  T -> O) 

( 2 . 1 0 )  

From (2.8)-(2.10)there follows the rep- 

5 + �9 (0, ~, , ) / 4  > 1, 
5 + , ( 0 ,  % , ) / 4 < 1 ,  
if 5 + ~ ( 0 ,  ~ , , ) / 4 ~ > t ,  

if 5 @ -r (0, q), , ) / 4 ~  t ,  

{ {0 
i, if 5 > I, '-- 5, if 5 ~ i ?+= 5, if 5<i, 6+---- (2.11) 

(8+ is the value of 8 corresponding to Y+). 
satisfying the conditions 

These values are realized for parameters ~ and 
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a22 = 0 ( t ) ,  ~(t - - ~ ,  % r  = O, if 0 ~.~ a <~ 1, a2, = O(l)), if (z > J, 

w h i c h  a r e  e q u i v a l e n t  t o  t h e  f o l l o w i n g :  

8 + 1 - -  9 -- 9 = 0(1), sv o + 2r  ~> O(t t+a),  (2.12) 

a =- 0(1), if 0 ~ (~ ~ t;  

S + 1 - - 9 - - ~ = 0 ( t ) ,  if a >  1. ( 2 . 1 3 )  

From t h i s  a n a l y s i s  i t  f o l l o w s  t h a t  i f  0 < - a  < - 1 ,  t h e n  i n  c a l c u l a t i n g  t h e  q u a n t i t y  q+ 
from Eq. (2.5) both terms of expression (1.6) are important. If, however, a > i, then the 
first term of the expression is decisive, since at ~ = B+ 

Yi = t, u = '1 + 4(~ - -  1) -~ ~. ( 2 . 1 4 )  

This completes our investigation of ~he order of q, in the part of region ~ in which con- 
dition (2.6) is satisfied. As a result of a similar investigation, too lengthy to reproduce 
in detail, it was established that in the rest of the region ~ (neighborhood of the point 

= i, ~ = 0) the order of q, was less than in the subregions defined by the conditions (2.12), 
(2.13). As follows from (2.11), in these subregions 

1 -r- ct, if O ~ c t ~ <  1, ( 2 . 1 5 )  
r2n; -2 = 0 (t6), 6 ---~ 2(z, if cr > I 

(n, is the value of n that minimizes Q at m = I), so that expression (1.6) can be reduced 
(at m = i) to the simpler form 

r%~--6t--3 
Q = t (n 2 -- 1) a22-~ 

(l -- n -2) b2~ @ 2b3ar2n -2  ( 2 . 1 6 )  

From this simplified expression q, may be calculated with an error of the order of t ~ [6 is 
determined from (2.15)] in subregions (2.12), (2.13) and with a greater error in the rest of 
~. However, since, in this case the maximum value of q, is realized in precisely these sub- 
regions, it is calculated with an error of the order of t ~, even if Eq. (2.16) is used over 
the entire region ~. 

We will show that where the value of the parameter a does not lie close to unity, expres- 
sion (2.16) can be simplified, so that with a certain degree of accuracy auxiliary problem 
(2.5) may be solved analytically. 

Let the value of a lie on the interval 0 -< a <--I. By means of the straight line 

I t  ~ + 1 / 2  - -  (1 - -  %) e /2 ,  
~P = % - -  (0,  

we divide the region a into two subregions 

(at $o = 0 there 
(2.18) 

if  t =+t'2 >~ ( t -- %) e/2, 
( 2 . 1 7 )  

if t ~+1/2 ~.~ (t  -- Vo) e/2, 

r 1 6 2  9(1 - -  q~), 0 ~ <  9 < . .  t ;  

O ~ . ~ < ~ m i n  [%, qD(1-- 9) 1 , 0 < ~ 9 ~ <  I 

is only one subregion, coinciding with the entire region ?~). 

(2.18) 

(2.19) 

In subregion 

b33r~n~ 2 ~ 0 (tl/2), 

so that, by admitting an error of the order of t ~2, we can neglect this term by comparison 
with b22. Since in subregion (2.19) ~ % t~# 2, and, in accordance with (2.12), the value 
9 = 9+ realizing extremum (2.5) is such that 

qo+ = o 0 ) ,  1 - 9 +  = o 0 ) ,  

we may assume that 

As a result, we arrive at the following simplified expressions: 
r4n-6t-3 

- -  [in subregion (2.18)], Q --  t (n ~ 1) a~.. + (t - n -2) b~2 

r4n_6t_ s (2.20) 
Q = t (n 2 - -  t) a~ + [in subregion (2.19)]. 

(t -- n -2) b202 -~- 2b33r2n -2 
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The first of these expressions is a decreasing and the second an increasing function of ~, 
since 

Oa2ffOr Ob~/O$>O, ObsffO~<O, 

and hence the quantity q~ reaches its greatest value of the line * = ~o; i.e., ,+ = $o. Ac- 
cordingly, s calculating extremum (2.5), with an error of the order of if/2 instead of (2.16) 
we can use the expression 

rin-ft-3 
Q = t ( n  2 - 1 )  a~2+ ( l - n  -z) b~2" (2 .21 )  

If the value of the parameter ~ is not very close to unity, then it is possible to ne- 
glect n~ 2 as compared with unity, since for the values of the parameters ~, ~ realizing maxi- 
mum (2.5), in terms of order, by virtue of (2.11) 

nf  ~ = 0 ( t i - = ) .  

Accordingly, expression (2.21) reduces to the simpler form 

Q = t n 2 a~2 + r 'n-6t-3/b~2.  

The minimum of this quantity with respect to n, and then the maximum of q, with respect to 
are calculated analytically. As a result, for the quantities realizing extremum (2.5), we 
obtain the following expressions: 

q + = r [ l  + O ( W  2 + t 1-~ + ~)1, 0 < = < t ,  
(2 .22 )  

n+  = <]/t-~---}>, ~ +  = 114, ~+ = % 

(the angled brackets denote the integral part of the number). The value of ~o is given by 
(2.17). 

We note that if r = o(tP), then at 1/2 + ~ spsl+~ it is possible to assume that~+=+ = 
0, and result (2.22) is correct to within an error of the order of t x4~-0. When p > 1 + a, 
although the value of ~o is close to zero, it cannot Be assumed that ,+ = O, since the maxi- 
mum of q, with respect to ~, which at ~ = 0 is of the order of te+~(~ = (p -- ~--1)/3 > 0), is 
much less than the value of (2.22), which is of the order of t e. 

Relations (2.22) give the complete solution of the auxiliary problem on the interval 
0 5 a < i. On the interval ~ > i it follows from (2.14) that for Q it is possible to take 

the expression 

Q = t(n ~ - t)a~2 , 

from which we find the complete solution of the auxiliary problem in the form 

q+ = 3t{l + O [ t  2~ + t*(=-~)+ ~]}, n+ = 2, ~+ = , +  = O. ( 2 . 2 3 )  

For values of ~ close to unity the auxiliary problem cannot be solved in explicit form. 
In solving it numericaliy it is possible to employ simplified expressions (2.16) and, if 

< i, the even simpler expressions (2.21). 

The values of the parameters ~+, ~+ determined from relations (2.22), (2.23) satisfy 
condition (2.4). Accordingly solutions (2.22), (2.23) of the auxiliary problem give the 
solutions of the optimization problem in the regions of variation of the parameters t, r cor- 
responding to the intervals of variation of the parameter ~ considered. For convenience, we 
present these solutions expressed in dimensional parameters. 

Region A. The parameters t, r satisfy the relation 

r = O(t=), 0 ~ <  1 

( s h e l l s  o f  "medium'  l e n g t h ) .  

We have the following expressions for the optimal values: 

p+ = 1,#t'22 go) /7 [._.__H ~5!2~ i / ~ # {  ]"~R ]i12 ~B~ ,  L t t ~ M  - '  n + =  \ u  --X--I r  t14, $+ = %  (2 .24)  

[~o is found from (2.17)]. The optimal reinforcement structures corresponding to the values 
= ~+, ~ = ~+ are determined as a result of solving system of equations (2.1). For the 

values ~+ = 1/4, @+ = 0 there is a unique optimal reinforcement structure defined by two 
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families of fibers: The first is directed along the generator and has a volume fraction ~ = 
~/4p while the second is directed along the circumference and has a volume fraction ma = 
3~/4. 

Region B. The parameters t, r satisfy the relation 

r =- O(tcg, ot > i 

("long" shells). For the optimal values we have 

" H \ 3 _  p+=3[r l2o )  l ~  ) E, n + : 2 ,  q+  = * +  ---- O. (2.25) 

The values ~+ = 0, ~+ = 0 correspond to a unique optimal reinforcement structure defined by 
a single circumferential family of fibers with a= = m. 

The accuracy with which optimal values (2.24), (2.25) are calculated is indicated in 
(2.22) and (12.23), respectively. For values of the parameter ~ close to unity relations 
(2.24), (2.25) give a substantial error and are therefore unsuitable. Above it was recom- 
mended that in this region of values of ~ the auxiliary problem be solved numerically. The 
fact that in regions A and B the values ~+, ~+ satisfy condition (2.4) suggests that this 
condition is also satisfied in the region ~ z i, so that the solution of the auxiliary prob- 
lem is a solution of the optimization problem. Otherwise it is necessary to solve the opti- 
mization problem by starting from the complete expression (1.6), minimizing it with respect 
to m and n, and then maximizing with respect to ~ and ~, in accordance with (2.3). 

If the shells are subjected to uniform normal hydrostatic pressure of intensity p, the 
results obtained also give the solution of the optimization problem in the regions in ques- 
tion without any increase in error. 

Since stability condition (1.5) is formulated in terms of the investigated quantity Q, 
in the process of solving the optimization problem we also investigated the solution of the 
stability problem for a hinged orthotropic cylindrical shell subjected to uniform normal 
lateral or hydrostatic pressure. The following assertions were proved: I) The value m = i 
(m is the number of longitudinal waves) is critical (minimizes Q) at least in the region of 
values of the coefficients of orthotropy bounded by condition (2.4); 2) for shells of "medium" 
length (0 -< a < I) in the region of values of the coefficients of orthotropy formed by the 
intersection of subregions (2.12), (2.18) it is permissible to simplify the stability condi- 
tion so as to make possible explicit minimization with respect to the number or circumferen- 
tial waves n (the corresponding formula for the critical pressure is an analog of the Pap- 
kovich formula for isotropic cylindrical shells); 3) for "longer" shells, in this region of 
values of the coefficients of orthotropy it is permissible to adopt a "semimembrane" formula- 
tion of the stability condition based on (2.12); 4) the "semimembrane" formulation admits a 
generalization of the form (2.06) which, without affecting the accuracy, is valid for shells 
of "medium" and greater length over the broader region of values of the coefficients of ortho- 
tropy defined by conditions (2.12), (2.13). However, whereas the problem of optimization 
with respect to critical pressure may be completely solved on the basis of stability condi- 
tion (1.5) simplified in the sense of (2.16), in the stability problem itself such simplifi- 
cation is permissible only in a certain (see above) region of values of the coefficients of 
orthotropy. 
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